Characterization of steady solutions to the 2D Euler equation

نویسندگان

  • Anton Izosimov
  • Boris Khesin
چکیده

Steady fluid flows have very special topology. In this paper we describe necessary and sufficient conditions on the vorticity function of a 2D ideal flow on a surface with or without boundary, for which there exists a steady flow among isovorticed fields. For this we introduce the notion of an antiderivative (or circulation function) on a measured graph, the Reeb graph associated to the vorticity function on the surface, while the criterion is related to the total negativity of this antiderivative. It turns out that given topology of the vorticity function, the set of coadjoint orbits of the symplectomorphism group admitting steady flows with this topology forms a convex polytope. As a byproduct of the proposed construction, we also describe a complete list of Casimirs for the 2D Euler hydrodynamics: we define generalized enstrophies which, along with circulations, form a complete set of invariants for coadjoint orbits of area-preserving diffeomorphisms on a surface.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Comparison of three different numerical schemes for 2D steady incompressible lid-driven cavity flow

In this study, a numerical solution of 2D steady incompressible lid-driven cavity flow is presented. Three different numerical schemes were employed to make a comparison on the practicality of the methods. An alternating direction implicit scheme for the vorticity-stream function formulation, explicit and implicit schemes for the primitive variable formulation of governing Navier-Stokes equatio...

متن کامل

TVD and ENO Schemes for Multidimensional Steady and Unsteady Flows A Comparative Analysis

This work deals with numerical solution of first order hyperbolic equation or system in 2D or 3D. In the first part, the solution of a 2D linear scalar equation is investigated. Using this model problem, the results of different numerical schemes are compared from the point of view of accuracy and parallel efficiency. The next part describes 2D and 3D steady numerical solutions of the transonic...

متن کامل

Pressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique

Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...

متن کامل

Stationary solutions for the 2D stochastic dis- sipative Euler equation

A 2-dimensional dissipative Euler equation, subject to a random perturbation is considered. Using compactness arguments, existence of martingale stationary solutions are proved. Mathematics Subject Classification (2000). Primary 60H15, Secondary 76D05.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015